Diagnosing Sneaker Wave Threat

David Elson
National Weather Service Portland OR

A Sneaker Wave is a wave running up on shore significantly farther than any wave in at least the previous five minutes, such that it is a surprise to the casual observer.

Mavericks Sneaker Wave by Jon Sandstrom

The Classic Case of Sneaker Waves

as suggested by Nicolini / Aylward

Based on the idea of alternate periods of Destructive/Constructive Interference

The Classic Case in a Wave Energy vs Period Plot

What does the actual Wave Interference pattern look like?

3 hours worth of projected interference...

What does the actual Wave Interference pattern look like?

3 hours worth of projected interference...

A detailed look at 10 minutes of the the the interference pattern...

A detailed look at 10 minutes of the the interference pattern...

Objectively assessing sneakers...

Charts are analyzed by:

Over a period of 3 hours, searching all 4 minute intervals and assigning a peak wave height to each interval

Charts are analyzed by:

Over a period of 3 hours, searching all 4 minute intervals and assigning a peak wave height to each interval

Checking subsequent 30 second periods and finding the peak wave height to each of those periods

Charts can then be analyzed by:

Over a period of 3 hours, searching all 4 minute intervals and assigning a peak wave height to each interval

Checking subsequent 30 second periods and finding the peak wave height to each of those periods

Finding the greatest increase in wave height

But there are other cases that don't fit the "Classic" mold

Like this fatality case in Mendocino County CA...

The Wave Interference Pattern showed possible Sneaker Waves

The Wave Interference Pattern showed possible Sneaker Waves

Greatest Height increase can be classified for public consumption:

< 2 ft	
2 to <	3 ft
3 to <	
≥ 4 ft	

Low threat of Sneaker Waves Moderate threat of Sneaker Waves High threat of Sneaker Waves Very High threat of Sneaker Waves

Sneaker Wave Threat: Moderate

Sneaker Heights up to: 2.6 ft

When do Sneaker Wave deaths occur?

When do Sneaker Wave deaths occur?

When do Sneaker Wave deaths occur?

How often do Sneaker Waves Occur?

How often do Sneaker Waves Occur?

What about other areas?

Washington: No known fatalities

California: Only reports are from central and northern coast

Not a direct measurement of sneakers

It is a deep-water wave

It does not include beach geography

It does not factor in wave run-up

It does not include human behavior factors

Thank you

So how are the Wave Interference Charts generated?

Given NDBC Spectral Wave Density Data:

```
f = \text{frequency (1/s)}

E = \text{Energy (m}^2/\text{s)}

bw = \text{bandwidth(s)} = f_2 - f_1
```

So how are the Wave Interference Charts generated?

Given NDBC Spectral Wave Density Data:

```
f = \text{frequency (1/s)}

E = \text{Energy (m}^2/\text{s)}

bw = \text{bandwidth(s)} = f_2 - f_1
```

For each frequency bin, we can calculate a wave height:

$$H_o = Height(ft) = 4 \times sqrt(sum(E \times bw)) \times 3.28084$$

So how are the Wave Interference Charts generated?

Given NDBC Spectral Wave Density Data:

$$f = \text{frequency (1/s)}$$

 $E = \text{Energy (m}^2/\text{s)}$
 $bw = \text{bandwidth(s)} = f_2 - f_1$

For each frequency bin, we can calculate a wave height:

$$H_o = Height(ft) = 4 \times sqrt(sum(E \times bw)) \times 3.28084$$

Calculations are made at 1 second intervals in Excel, using a sine function. All bins can then be combined into a single deep-water wave height.

Dispose of the second of the s

Currently only a diagnostic tool

How often do Sneaker Waves Occur?

Recall...

How often do Sneaker Waves Occur?

Sneaker Wave Index	Late Spring to Early Fall (May/July)	Late Fall to Early Spring (Nov/Jan/Mar)
Very High	5 %	54%
High +	8 %	71 %
Moderate +	29%	92%